pywrdrb.pre.PredictedInflowPreprocessor#
- class pywrdrb.pre.PredictedInflowPreprocessor(flow_type, start_date=None, end_date=None, modes=('regression_disagg',), use_log=True, remove_zeros=False, use_const=False)#
Predicts catchment inflows at Montague and Trenton using specified modes (e.g., regression, perfect foresight, moving average).
Example usage: ```python from pywrdrb.pre import PredictedInflowPreprocessor
inflow_predictor = PredictedInflowPreprocessor(flow_type=”nhmv10”, start_date=”1983-10-01”, end_date=”2016-12-31”, modes=(“regression_disagg”,),)
inflow_predictor.process() inflow_predictor.save() ```
- __init__(flow_type, start_date=None, end_date=None, modes=('regression_disagg',), use_log=True, remove_zeros=False, use_const=False)#
Initialize the PredictedInflowPreprocessor.
- Parameters:
flow_type (str) – Label for the dataset.
start_date (bool, None) – Start date for the time series. If None, match the input data.
end_date (bool, None) – End date for the time series. If None, match the input data.
modes (tuple) – Modes to use for prediction. Default is (‘regression_disagg’,).
use_log (bool) – Whether to use log transformation. Default is True.
remove_zeros (bool) – Whether to remove zero values. Default is False.
use_const (bool) – Whether to use a constant in regression. Default is False.
- Returns:
None
Methods
__init__
(flow_type[, start_date, end_date, ...])Initialize the PredictedInflowPreprocessor.
get_prediction_node_lag_combinations
()Return dict of {column_label: [((node, lag), mode)]} across all modes.
load
()Loads catchment inflows and water consumption data.
make_predictions
(regressions)Generate lead-time predictions using the timeseries data and trained models.
process
()Run full prediction workflow.
save
()Save predicted timeseries to CSV.
train_regressions
()Train the AR models for different node, lag combinations.